
INTEGRAL CHARACTERISTICS IN THE DETERMINATION OF 

COEFFICIENTS OF PARABOLIC SYSTEMS AND EQUATIONS 

V. V. Vlasov, V. G. Seregina, 
and Yu. S. Shatalov 

UDC 536.21:517.3 

Exact analytical formulas are obtained to determine the thermophysical parameters 
of heat- and moisture-transfer processes in capillary-porous bodies described by 
parabolic systems. 

A number of representations of the matrix A entering into the problem 

U I - - A U ~ = O ,  U(x, 0 ) ~ 0 ,  t>O ,  O , < x < l ~ ,  (1) 

~U~(il ,  t )+g~U(i l ,  t)=G~(t),  i = 0 ,  1, (2) 

which can be used in expe r imen ta l  p r a c t i c e  as the  compu ta t iona l  fo rmulas  to de te rmine  t h e r -  
mophysical parameters, are proposed in this paper.* 

We obtained the representations on the basis of two kinds of integral characteristics 
of the solution U(x, t): 

l 

s(t)  = [ p(x) u (x, t)ax, (3) 
b 

where ~(x) is a scalar weight function, and 

U*(x, p)= i exp(--pt)U(x, 0dr, (4) 

b 

where exp(--pt) is a scalar exponential function; p is a parameter. 

The problem of determining A is among the inverse problems which are quite urgent in 
thermophysical investigations. For example, the interrelated heat and moisture transfer in 
capillary-porous bodies is modeled [i, 2] by the system (I) with the matrix 

a + K*am~ K'am K*am~p J 
A = / a ~ 8  am am6p ' (5) 

! 

L M*am8 M*a m a p  + M'am8 v 

K* er . M*- -  PK* + ~ e Cm MHb 
c T C m poRT 

P90 , 8p-- Kp 
= 92H--  9o u a~9o 

Numerical values for the elements of this matrix must be found by using certain infor- 
mation on the temperature T, the moisture content u, and the total pressure of the moist air 
within the body P. 

*An expanded exposition of results announced briefly in [12] is given here. 

Tambov Institute of Chemical Machine Construction. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 32, No. 4~ pp. 712-718, April, 1977. Original article submitted April 
13, 1976. 

This material is protected by copyright regL~tered in the name o f  Plenum Publishing Corporation, 227 West t 7th Street, N e w  York, ~i Y. 
10011. No  part o f  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec tronic, 
mechanical, photocopying,  microfilming, recording or otherwise, wi thout  written permission o f  the publisher. A copy o f  this article is 
available from the publisher for  $Z50 .  

453 



Exact computational formulas to determine the parameters entering in a matrix A of the 
form (5) are obtained below in particular. 

As is known [3, 4], the method of measurement is most often guided by the form of the 
boundary conditions and the form of the boundary functions. In one group of methods, the 
Gi(t) are selected beforehand and are given by a system of programmed regulation. In this 
case the functions mentioned are selected so that, in addition to sufficient simplicity, their 
reproduction by automata would be assured by the simplicity and accuracy of the formulas by 
which the coefficients are determined. 

The second approach, when the boundary functions only are fixed but not given in advance, 
is used much more rarely in experimental practice [5, 6] because of the lack of a sufficiently 
simple and reliable analytical basis. 

The construction of our formulas is such that they may be used in both the first and the 
second cases. 

A number of examples of the application of integral characteristics (3) and (4) to de- 
termine the thermophysical parameters of processes described by scalar problems are indicated 
in [10-12], where such coefficients as the thermal diffusivity and heat elimination, which 
are equivalent to the coefficients of composite materials of a definite structure, etc., are 
considered. Moreover, methods are proposed in [12] to find the integral characteristics of 
both kinds by means of test results with an appropriate analysis of the accuracy and the sta- 
bility. Apparatus are described for which the integral characteristics underlie the method- 
ology. The apparatus are intended to measure the thermophysical characteristics corresponding 
to the time chemical reactions are proceeding in the material under investigation, the heat 
elimination from multilayer walls, the thermal conductivity and specific heat when internal 
points of the specimen are not accessible to observations, and other parameters. 

In contrast to the notation used in writing vector problems, all the matrices in the 
system and the boundary conditions will here he square of the same order as the A being 
investigated. We later assume the matrix A to be constant, real, invertible, and to satisfy 
the condition of parabolicity of the system (i), i.e., the real parts of its characteristic 
numbers will be positive. 

Since we do not examine questions of the solvability and smoothness of the solutions of 
the "direct" problems, let us then at once assume the boundary conditions of the functions 
Gi(t ) to be such that (I) and (2) have a unique classical solution which admits of Laplace 
transform and (needed during the discussion) a single differentiation of the integrals (3) 
and (4) with respect to the parameters t and p, respectively. 

Application of the Integral Characteristics (3) 
l 

with the Weight Function 0(x) E l:S(t) - ~ U(x, t)dx 

0 

i. Let U(x, t) be a solution of the problem 

Ut--AU~ = O, U(x, O) = O, U( i l ,  t) = Gi(t),  i = O, 1, 

where the Gi(t) are continuous and det[Go(t) + Gx(t)] ~ 0 for 0~t ~-~6x. 

Then A has the form 

(6) 

l 

where S (t) = I U(x, 
0 

t 

A = ~ S ( t )  G~ ~- GI(T) d1: , ( 7 )  
./ 1/-t - - T  

0 

t)dx. 

2. Let U(x, t) be a solution of the problem 

U , - - A U ~ = O ,  U ( x ,  0 ) - - 0 ,  U~(i l ,  t ) + ~ U ( i l ,  t ) = G ~ ( t ) ,  i = O ,  1, 

where the Gi(t) are continuous and det[G1(t) --Go(t)] # 0 for 0 ~ t ~ 61 and the Bi are con- 
stant matrices. Then 

A = lim S '  (t) [G~ (t) - -  Go (t)] -~. 
t~0-4- 
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3, Let U(x, t) be a solution of the problem 

U~- -AUxx  = O, U(x,  O) = O, U~(il, t ) =  G~(t), i =  O, 1, 

where  t h e  G i ( t )  a r e  c o n t i n u o u s  f o r  t / > 0  and d e t [ G : ( t )  -- G o ( t ) ]  # O. Then 

A = S '  (t)[G~(t)--Go(t)]-a, t>O. 
We present just the proof of the first assertion, since it is the least trivial. The 

remaining two are easily obtained by integrating the equations in x between the limits 0 and 
2. Let us examine the boundary-value problem (6). 

The Laplace transform U*(x, p) of the solution U(x, t) of the problem has the form 

U* (x, p)=: sh Bx. sh -1BI.G~ (p) @ sh B (I - -  x) sh -1Bl.  G~ (p), B = ! pA -~, (8) 

where G~(p) and G~(p) are Laplace transforms of the boundary functions Go(t) and G,(t). Hence 

l 

S * ( p ) =  S U * ( x ,  p ) d x - -  1_ A ( c h B I - - E ) s h - l B t ( G g ( p ) §  
o J p 

where  S*(p)  i s  t h e  L a p l a c e  t r a n s f o r m  o f  t h e  i n t e g r a l  c h a r a c t e r i s t i c  S ( t ) .  

S i n c e  t h e  r e a l  p a r t  o f  t h e  c h a r a c t e r i s t i c  numbers  o f  t h e  matr- lx  A i s  p o s i t i v e  by assump- 
t i o n ,  t h e n  l im  ( c o s h  g l  -- E ) s i n h - ~ B g  = E. T h e r e f o r e ,  

I V-A(O 0(p)§  for p - - ~ + c o  S* (p) ~ |/_p_ 

Furthermore, let us assume Go(t) and G~ (t) to be such that the appropriate asymptotic expan- 
sion of the original as t + 0+ follows [8] from the axymptotic expansion of the transform 
asp++ ~. 

Since the original L-' of the product ~/~(Go*(p) + G1*(p)) is 

then 

L - l [  I.~- V-A(G; (p) 
L VR 

# 

+ O~ (p)) ] = ]/-A-- [ G~ (~) -k 6:, (z) d'~, 
J 1/~ (t -- ~) 
0 

QED. 

t 

s (t) ~ 1 / ~  - [ Go (~) + G~ (-c) d-c, 

Let us note the one important particular case when ~ = =, G~(t) ~ O. Here 

t 

= ' for all t ~> O. A ~ S(/) V - / - - ~  
0 

Let us present the computational formulas to determine the elements of a matrix A of 
the form (5) for a system of heat- and moisture-transfer equations: 

am = cz22, 6 = z21/z22 , ~p = z23/z22, K* = zi3/z23 = Q~/z22, 

114"= z~l/z21=z~2/z~2 " a=C(Z~lZ~__z~z~l)/Z~2, ap=c(z22z33 _.z~az32Wz~ ' 

where the matrix is Z = ll jkll  and c is a constant coefficient. 

In determining the elements of the matrix A from (7), 

3 

c : ~ ,  Z~k=Zgi,~g,,l~, g ~ h :  l imSi,  , ( t ) H ~  1, ], k =  1, 2, 3. 
n~l l~O+ 

The matrix H -t = IIH: II  is inverse to the matrix 

(9) 

t 

H = 11 H,.h !!~ = j '  G~ ('0 -k G 1 (T) d~' 
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and is determined as follows: 

[ H2~ns~ - -  H2sHs~ H1sH~2 - -  H12H32 HI~H2s - -  H~3H2~ -] 

n _ l =  l_~ . H2sHs, _H2 ,H~  ~ HuUss_H1sHs1 Hxj-I21--HnH~a ] (i0) 
det H | 

1 H nH32 -- H2~HsI HI~H~I -- HnHs~ HnH2, -- HI2H~I 

det H = HuH2=Hsa- HnH2sHs2 --HI~H~Hs~ -~ HuH~sHs1- 

-- HisH22HSl - [ -  / - f1S/-~21Hs2.  

Application of the Integral Characteristics (3) with the 
l 

YC t ~ ~ 
Weight Functions p(x) = sin 7-x: S(t~ = sin -/- xU(x, l) dx 

, , , , ,  , , , 
q 

Let us put p(x) = sin(~/l)x into (3). 

i. Let U(x, t) be the solution of the problem (6), where the Gi(t) are continuous for 
t >/0 and det[Go(t) + Gt(t)] # 0. Then 

A = S ' ( t ) ~  a . ( t )+a l ( t ) - -  S(O t > o ,  (11) ~ - [ -  , 

l 

t where  S (t) sin ~ xU (x, t) dx; sin r~ = --x--is a scalar function. 
l l 

0 
The determination of A from (ii) is associated with the calculation of the derivative 

S' (t), which sometimes induces significant errors, as is known. 

Let us eliminate S' (t) by solving the appropriate Cauchy problem: 

t 

l ./ - -  f" A (t - -  ~:) A [a0 (~) + 61 ('0l d'~. 
0 

The d e t e r m i n a t i o n  o f  A from t h i s  e q u a t i o n  f o r  a r b i t r a r y  Go( t )  and G , ( t )  i s  a s s o c i a t e d  
with the inversion of matrix series. 

2. If Go(t) + G,(t) = C, where C is a constant invertible matrix, then 

A = - - - - l n  E - - - -  S(t)C -1 , t>O.  
~ t  I 

3. I f  Go( t )  + Gx( t )  = go + g t t ,  where  go,  g ,  a r e  c o n s t a n t  m a t r i c e s ,  t h e n  

A = - - y  gl ~ --~ (go + g~t) - -  S (t) . 

. _  a a  

A p p l i c a t i o n  o f  I n t e g r a l  C h a r a c t e r i s t i c s  U* (x, p)= i'exp(--p/) U(x, t)dl 

In  t h i s  c a s e  ( i n  c o n t r a s t  t o  t h e  p r e c e d i n g  c a s e ) ,  v a l u e s  o f  t h e  i n t e g r a l  c h a r a c t e r i s t i c s  
(4) f o r  j u s t  two o r  t h r e e  p o i n t s  o f  t h e  s p a t i a l  i n t e r v a l  [0,  Z] e n t e r  i n t o  t h e  r e p r e s e n t a t i o n  
o f  t h e  m a t r i x  A of  t h e  p rob lem ( 1 ) ,  ( 2 ) .  

1. Le t  U(x, t )  be a s o l u t i o n  of  t h e  problem (6 ) ,  where t h e  G i ( t )  a r e  such t h a t  

0 

4 ~ (G; (p) + G~ (p)) (G; (p))-i _o. (12) 

2. L e t  U(x, t )  be a s o l u t i o n  of  t h e  problem 

U,--AU==O, V(x, 0):-0, U~(O, t)~O, U(t, t )=6  l(t), 

where t h e  Go( t )  i s  such  t h a t  det~exp(--pt)Go(t)dt=/=O, Go(t)=U(O, t). Then 
0 
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A = l ~  [Arch G~ (p)(G~ (p))-~]-2, (13) 

O [ ( p ) =  ~exp( - -p t )  Oi(t)dt, i=O,  ], 2, p > O  where 
0 

Le t  us p r e s e n t  t h e  p r o o f  o f  j u s t  t he  f i r s t  a s s e r t i o n  because  of  t he  t o t a l  a n a l o g y  be -  
tween the  d i s c u s s i o n  in  bo th  p r o o f s .  

The L a p l a c e  t r a n s f o r m  U*(x, p) of  t h e  s o l u t i o n  U(x, t )  o f  t h e  problem (6) has  t he  form 
(8) .  Then 

G: (p) = s h  B /-- s ~  ~ Bl (G~ (p) + G~ (p)). 
" 2 

I f  i t  i s  t a k e n  i n t o  accoun t  t h a t  s i n h  B1 = 2 cosh  B ( / / 2 )  s i n h  B ( / / 2 ) ,  t h e n  

G; (p) = ~--- sh -~ B --l (G~ (p) @ G~ (p)), 
2 

from which the desired representation indeed follows. 

Determination of the elements of the matrix A from (12) and (13) is related to the in- 
version of a matrix function -- the hyperbolic cosine. This operation can be executed on the 
basis of the theory of elementary divisors [7, 9]. 

As an illustration, let us consider the construction of the matrix functionY =ArccoshN, 
~ = [[Yjk[[~, N = [[Njk[[~,  when the minimum polynomial of the matrix N has the form (v --vl)" 

-- v~)(w -- v3), w~-ere v1, ~2, ~s are the characteristic numbers of the matrix N which are 
determined from the characteristic equation det[wE -- N] = 0. In this case, according to the 
Lagrange--Sylvester formula [7, 9] 

Y = A r c h N  = [ N - - v 2 f ] [ N - - v 3 f ]  archv l -  

~_ [N--vlEI[N--%E] 
(v~ -- .~)(v~ -- ~) 

arch v., -" [N -- vie ] IN -- v.2E] arch v 3, 
(v~ -- ~'1) (v~ -- ~,~) 

v ~ l ,  i =  1, 2, 3. 

Let us note that in order 1:o evaluate the coefficients of a matrix A of the form (5) by 
means of (12) and (13), we should substitute c = l=p/4, Z= [Arccosh2(i/2)(G~(p) + G?(p))| 
(G~(p))-*] -~ into (9) if (12) is used andc = ~=p, Z= [Arccosh 2 G~(p)(G~(p))-*] -~ if (13) is 
used. The inverse matrices are found by means of (i0). 

NOTATION 

U,i, T, temperature; U2i, u, moisture content of the body; U3i, P, total pressure of 
moist air within the body; a, thermal diffusivity coefficient of a moist body (a = %/cpo); 
am, moisture conductivity coefficient; ap, convective diffusivity coefficient; c, specific 
heat of the moist body; co, specific heat of an absolutely dry body; Cm, specific isothermal 
mass capacity of a body; %, coefficient of thermal conductivity; %m, coefficient of moisture 
conductivity; e, criterion for the phase transition of a liquid into a vapor; 6, thermogra- 
dient coefficient referred to the difference in moisture content; 6p, relative coefficient of 
a filtered stream of vaporized moisture; r, specific heat of evaporation; B, coefficient de- 
pendent on ~; Cm, specific heat of a body of vaporized moisture; M, molecular mass of moist 
air; H, porosity; b, saturation of the body pores and capillaries by moisture; R, universal 
gas constant; Po, density of an absolutely dry body; P2, density of the fluid; Kp, coeffi- 
cient of filtration transfer of the vaporized moisture; E, unit matrix. The remaining nota- 
tion is in the text. Indices: 0, skeleton of an absolutely dry body; m, mass flow rate of 
moisture; p, filtration flux of vaporized moisture. 
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RHEOLOGICAL PROPERTIES OF ELASTOMERS IN COMPRESSION 

L. M. Boiko, V. G. Bobyl', 
Yu. I. Mustafin, and V. I. Drovorub 

UDC 539.376:678 

Creep processes associated with the uniaxial compression of rubber samples are stud- 
ied in relation to the applied load and preliminary stressing. It is found that 
the delay time is influenced by the degree of compression. 

Problems facing research workers concerned with engineering practice usually include that 
of allowing for the actual stressed state of materials when using these as construction ele- 
ments. For many materials, however, constructions are calculated without allowing for their 
deformational anisotropy and the time dependence of their elastic characteristics. Many in- 
vestigations have been concerned with the deformation characteristics of elastomers under 
tensile conditions [i]; compression has been far less considered, although rubber parts are 
often used under compressive conditions in practice. We therefore set ourselves the problem 
of studying the theological properties of rubbers subject to the uniaxial compression of the 
samples. 

The investigations were carried out in an apparatus (Fig. i) facilitating the uniaxial 
compression of a cylindrical sample in accordance with a stepped loading program. At the in- 
stant of applying the load the readings of the indicators were recorded on a motion-picture 
film, which enabled the transient processes preceding steady-state creep to be studied. The 
deformations were measured during the transient processes by means of a capacitive sensor, 
to which an alternating voltage of frequency 1 MHz was applied, and an electron-beam indica- 
tor; after 120 sec, i.e., after the creep process had settled down, an indicator of the dial 
type was employed. In the first case the accuracy was 1,10 -6 m and in the second, 5.10 -~ m. 
In order to eliminate friction between the sample surfaces and the support we used a finely 
divided boron nitride powder. The samples took the form of cylinders i0 mm high; we studied 
samples of SKS-type rubber with an elastic modulus of 3.5 MPa. For a stepped loading pro- 
gram the apparatus allowed the mechanical behavior of the samples to be studied in two modes: 
a) the reaction of the sample to shock loading, which involved the development of an oscil- 
latory transient process (from the characteristics of which the elastic properties of the 
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